# The Evolution of Stars

Mars Desert Research Station, Hanksville, UT

Gary A. Becker

## **Characteristics of Main Sequence Stars**

| Class<br>Annie J. Cannon | Mass in<br>Comparison<br>to Sun | Contraction<br>to Zero Age<br>Main Sequence<br>Not well known | Surface<br>Temp.<br>(K) | Luminosity<br>compared<br>to sun | M<br>Absolute<br>Magnitude | Years on<br>Main<br>Sequence | Radius<br>in<br>suns |
|--------------------------|---------------------------------|---------------------------------------------------------------|-------------------------|----------------------------------|----------------------------|------------------------------|----------------------|
| O6                       | 29.5<br>blue supergiant         | 10 Th                                                         | 45,000                  | 140,000                          | -4.0                       | 2 M                          | 6.2                  |
| O9<br>late               | 22.6                            | 100 Th                                                        | 37,800                  | 55,000                           | -3.6                       | 4 M                          | 4.7                  |
| B2<br>early              | 10.0                            | 400 Th                                                        | 21,000                  | 3,190                            | -1.9                       | 30 M                         | 4.3                  |
| B5                       | 5.46                            | 1 M                                                           | 15,200                  | 380                              | -0.4                       | 140 M                        | 2.8                  |
| $A_{early}^{0}$          | 2.48                            | 4 M                                                           | 9,600                   | 24                               | +1.5                       | 1 B                          | 1.8                  |
| $A_{\text{late}}^7$      | 1.86                            | 10 M                                                          | 7,920                   | 8.8                              | +2.4                       | 2 B                          | 1.6                  |
| $F_{early}^2$            | 1.46                            | 15 M                                                          | 7,050                   | 3.8                              | +3.8                       | 4 B                          | 1.3                  |
| G2                       | 1.00                            | 20 M                                                          | 5,800                   | 1.00                             | +4.83                      | 10 B                         | 1.0                  |
| $K_{late}$               | 0.53                            | 40 M                                                          | 4,000                   | 0.11                             | +8.1                       | 50 B                         | 0.7                  |
| M8 <sub>late</sub>       | 0.17                            | 100 M                                                         | 2,700                   | 0.002                            | +14.4                      | 840 B                        | 0.2<br>two Jupiters  |

 $A_{\rm Sphere} = 4 \pi r^2$ 

Luminosity is proportional to mass $^{3.5}$ (sun = 1)Time on the main sequence = 1/mass  $^{2.5}$  x 10BY(sun = 10 billion years)

## Characteristics of Main Sequence Stars High to Low Low to High

| Class<br>Annie J. Cannon | Mass in<br>Comparison<br>to Sun | Contraction<br>to Zero Age<br>Main Sequence<br>Not well known | Surface<br>Temp.<br>(K) | Luminosity<br>compared<br>to sun | M<br>Absolute<br>Magnitude | Years on<br>Main<br>Sequence | Radius<br>in<br>suns |
|--------------------------|---------------------------------|---------------------------------------------------------------|-------------------------|----------------------------------|----------------------------|------------------------------|----------------------|
| O6                       | -                               |                                                               | V                       | V                                |                            |                              |                      |
| O9<br>late               |                                 | VI                                                            | VI                      | Vh                               |                            |                              | - 71                 |
| B2<br>early              | 1a                              | na                                                            | lai                     | lat                              | lat                        | la                           |                      |
| $\mathbf{B5}_{mid}$      | t's                             | t's                                                           | t's                     | t's                              | S                          |                              |                      |
| A0<br>early              | tl                              | tl                                                            | th                      | th                               |                            |                              |                      |
| $A7_{late}$              | le                              | le                                                            | le                      | le                               | 7                          | D                            | e<br>e               |
| $F_{early}^2$            | T                               | T                                                             | T                       | Ţ                                | ۱                          | ]                            | J                    |
| G2                       | re                              | re                                                            | re                      | rei                              |                            | rei                          | rei                  |
| $K_{late}$               | nc                              | nc                                                            | nc                      | na                               |                            | na                           | na                   |
| M8 <sub>late</sub>       | :                               | 1?                                                            | •                       |                                  |                            | 17                           | 17                   |



Gary A. Becker







## **Apparent Magnitude:** The brightness of an object as measured from Earth.

#### **Comparing Apparent Magnitudes**

| Object             | Apparent Magnitude |
|--------------------|--------------------|
| Sun                | -26.74             |
| Moon               | -12.6              |
| Venus              | -4.4               |
| Jupiter            | -2.1               |
| Sirius             | -1.46              |
| Vega               | +0.03              |
| Capella            | +0.07              |
| Polaris            | +1.99              |
| from Bethlehem     | +3.5               |
| from Rural Locales | +6 to +6.5         |
| with Binoculars    | +8 to +10          |
| Hubble Space Tel.  | +30                |
| James Webb S. T.   | +32 to +35         |



https://courses.lumenlearning.com/astronomy/chapter/surveying-the-stars/



Distance Modulus

Where

M = absolute magnitude

m = apparant magnitude

r = distance in parsecs

Gary A. Becker slide



Use this Scale to measure the parallax angles of the three stars of the Great Summer Triangle.

| Deneb  |    |          |    |          | -  | Para | illax i | n mil | liarcs | econ | ds (m | as) <sub>Ve</sub> | ga  |     |     |     |          |        | Altair |
|--------|----|----------|----|----------|----|------|---------|-------|--------|------|-------|-------------------|-----|-----|-----|-----|----------|--------|--------|
| 0 10   | 20 | 30<br>30 | 40 | 50<br>50 | 60 | 70   | 80      | 90    | 100    | 110  | 120   | 130               | 140 | 150 | 160 | 170 | 180      | 190    | 200    |
| Altair |    |          |    |          |    |      |         |       |        |      |       |                   |     |     |     |     |          |        | Altair |
| Deneb  | 7  |          |    |          |    |      |         |       |        |      |       |                   |     |     |     |     |          |        |        |
| Vega   |    |          |    |          |    |      |         |       |        |      |       | Ve                | ga  |     |     | G   | ary A. I | Becker | slide  |

**PRACTICE WITH THE DOUBLE STAR ALBIREO:** Significant numbers are a requirement.

**First, find the Distance to Albireo.** Parallax of Albireo = 8.46 mas (three significant figures)

8.46 mas x  $\underline{1''}_{1000 \text{ mas}}$  = 0.00846";  $D = \underline{1}_{p}$ ;  $\underline{1}_{0.00846}$ " = **118 pc** x 3.2616  $\underline{ly}$  = **386 ly** pc

<u>Then, find the absolute magnitude of Albireo</u>. Apparent magnitude of Albireo = +2.90 (given) M = m + 5 - 5log r; M = +2.90 + 5 - 5log 118; M = +2.90 + 5 - 5(2.072); M = +7.90 - 10.36

#### M = -2.46

### <u>Finally, find the intensity difference between the sun and Albireo</u>. <u>Which star is brighter, the sun or Albireo</u>?

Difference in magnitude =  $\Delta M = M_{sun} - M_{star}$ ;  $\Delta M = +4.83 - (-2.46) = 7.29$  magnitudes.

Since Albireo has the brighter (more negative) absolute magnitude, it is the more luminous star. What is the actual intensity difference?

 $I = 2.51^{\Delta M}$ ;  $I = 2.51^{7.29}$ ; I = 820, taking into account significant figures Albireo is brighter than the sun by an intensity difference of 820 times.

#### Data Table for the Great Summer Triangle Lab

| Name of | Parallax                  | Apparent  | Distance in      | Absolute              | Change in      | Intensity in          | Which Star is      |
|---------|---------------------------|-----------|------------------|-----------------------|----------------|-----------------------|--------------------|
| Star    | (mas)                     | Magnitude | Parsecs/         | Magnitude             | Magnitude      | Comparison            | Brighter, the      |
|         | (Number of                |           | Light Years      | $M = m + 5 - 5\log r$ |                | to the Sun            | Sun or the         |
|         | Significant<br>Figures to | (given)   | $D_{pc} = 1/p$ " | Distance              | M sun – M star | $I = 2.51^{\Delta M}$ | <b>Other Star?</b> |
|         | be used is in             |           |                  | Modulus               |                |                       | (Star's Name)      |
|         | parentheses)              | (m)       | pc / ly          | <b>(M)</b>            | <b>(ΔM)</b>    | <b>(I)</b>            |                    |
| Albireo | (3) 8.46                  | +2.90     | 118 / 386        | -2.46                 | 7.29           | 820                   | Albireo            |
| Altair  | (3)                       | +0.77     | /                |                       |                |                       |                    |
| Deneb   | (1)                       | +1.24     | /                |                       |                |                       |                    |
| Vega    | (2)                       | +0.03     | /                |                       |                |                       |                    |

(Correct Significant Figures Required)

On the next page, show all work, i.e., steps in the problem's solution, including the correct usage of significant figures.

Solution for Deneb

Two Significant Figures

Distance to Deneb in parsecs/light years: PARALAX = 2.0 mos  $\frac{2.0 \text{ mas} \times 1''}{1000 \text{ mus}} = 0.0020'' \text{ D} = \frac{1}{\text{PAR''}} = \frac{1}{0.0020''} = \frac{500 \text{ Pc}}{10020''} \times 3.2616 \frac{9}{\text{Pc}} = \frac{16009}{100020''}$  $D_{pc} = 1/p^{"}$ Absolute magnitude of Deneb: M= + 6.24 - 13.49  $\mathbf{M} = \mathbf{m} + \mathbf{5} - \mathbf{5}\log \mathbf{r}$ M=1-7.3 -7.25 M=+1.24+5-520g 500 M=+6.24-5(2.699) Difference in intensity compared to the sun:  $M_{sun} = +4.83$ Intensity =  $I = 2.51^{x}$ Difference in  $M = x = M_{sun} - M_{Deneb}$ ; J= 2.51 12.08 AM= +4.83-(-7.25) 67,000 TIMES BREATER J= 67,307 = AM= 12.08

Gary A. Becker

# **Electromagnetic Spectrum**



Constructed from many different slides by Gary A. Becker

## Relationship Between Energy and Wavelength

Max Planck-1858-1947 Light acts like a particle



E = Energy; h = Planck constant; f = FrequencyPlanck constant = 6.626 x 10<sup>-27</sup> erg sec



## **Planck's constant**: 6.626196(50) x 10<sup>-27</sup> erg s

A <u>dyne</u> is defined as the <u>force</u> required to <u>accelerate</u> a mass of **one** gram at a rate of <u>one centimeter per</u> <u>second squared</u>

An <u>erg</u> is the amount of <u>work done</u> by a <u>force</u> of <u>one dyne exerted over a distance of one centimeter</u>. In the CGS base units, it is equal to one gram centimeter-squared per second-squared  $(g \cdot cm^2/s^2)$ .



N E R G Y

Ε

### True Color Of The Sun or Why There Are No Green Stars

Center of Disk Red = 203 Green = 204 Blue = 198

> Limb of Disk Red = 154 Green = 141 Blue = 125

#### Surface Temperature 5772K

Gary A. Becker

## **Additive and Subtractive Colors**

Similar to the blackbody radiation of the sun where all colors are represented.

Similar to an artist mixing different pigments on a palette.

#### **Additive Colors**

#### **Subtractive Colors**

Gary A. Becker

**Daylight** = **5500 K** (daylight-balanced photographic film standard)

# Fluorescent = Dominant green line in emission, 5000 K

A modern fluorescent lamp consists of a glass tube filled with a mixture of argon and mercury vapor. Older lamps, like in this picture, contained just mercury vapor. Metal electrodes at each end give off electrons easily. When current flows through the gas between the electrodes, the gas is ionized and emits ultraviolet radiation. The inside of the tube is coated with phosphors, substances that absorb ultraviolet radiation and fluoresce, reradiating the energy as visible light. Gary A. Becker image

## Incandescent = 2700 K

弊

Gary A. Becker image

## Kirchhoff's Three Laws of Spectroscopy

- <u>**Continuous Spectrum</u>**—Kirchhoff's First Law: A solid, liquid, or gas (under high pressure) emits a continuous spectrum in which all colors (wavelengths) are represented.</u>
- **Emission Spectrum**—Kirchhoff's Second Law: A gas under low pressure when made to fluoresce (glow) will emit energy at certain discrete wavelengths which are specific to its composition/atomic structure.
- **Absorption Spectrum**—Kirchhoff's Third Law: A rarefied gas lying between a continuous source and an observer will produce a continuous spectrum with discrete wavelengths of light missing. These missing wavelengths are specific to the composition/atomic structure of the gas through which the light from the continuous source is passing. These same gases if made to fluoresce would produce emission lines at the same positions of the absorption lines which these gases create.

# **Types of Spectra**

**Continuous Spectrum** 

#### **Emission Spectrum**



#### **Absorption Spectrum**

modified http://en.wikipedia.org/wiki/Spectral\_line

## Gustav Kirchhoff's Three Laws of Spectroscopy Illustrated



Kirchhoff was German







## Kirchhoff's Three Laws Illustrated

#### Orion Nebula-M42

Nebula absorbs light in the specific wavelengths associated with the gasses that it contains.

H-gomma H-beta H-alpha

Absorption Spectrum

All wavelengths of energy are represented.

Continuous

Spectrum



Cloud glows in the light which is specifically made by the gasses that the nebula contains.

Gary A. Becker slide

## Kirchhoff's Laws I and II

Allen astronomy student, Monica L. Ward, observes fluorescing krypton gas.



Gary A. Becker digital photo

Gary A. Becker image



#### **EMISSION SPECTRUM LAB**

| Name of           | Line Colors and Positions | 1 | Identify the Fluorescing Gasses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|---------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plasma Gas        | BlueGYORed                |   | Spectrum Quiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Hydrogen          |                           |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Neon              |                           |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Oxygen            |                           | 2 | Sany & Andrew maps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Chlorine          |                           | 2 | Mellow yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mercury           |                           |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nitrogen          |                           |   | 0.15, 0.25, 0.55, 15, 25, 45, 85, 154, 305<br>EXPOSURE LENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Argon             |                           | 3 | Tri fan een aan de aander de |
| Xenon             |                           |   | This gas could only be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Carbon<br>Dioxide |                           |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Helium            |                           |   | 0.15, 0.26, 0.55, 15, 25, 45, 85, 154, 305<br>EXPOSURE LENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# **Solar Absorption Spectrum**



Adapted from NASA materials-Gary A. Becker

## Temperature and Line Strength

50,000 25,000 10,000 8,000 6,000 5,000 4,000 3,000 Sun 5 T STREN Η Ca II R TiO Ε He II He I N G T G Ca I Fe II Т Mg II Si IV Si III Н Н Si II 05 Bo Ao Fo Go Ко Мо M7

Temperature (K)

Spectral Type

## **Temperature and Line Strength**



#### Laboratory Exercises in Astronomy

# Spectral Classification



eta, zeta, epsilon, delta, gamma, beta,







# Spectrograph

#### Spectrograph using a Prism Comparison arc lamp Camera Collimator Collimating Slit Lens mirror Lens Slit while Light Detector Light from Telescope telescope Prism Focal plane of telescope Diffraction Violet light grating 3.5 Spectrogram of Vega Camera 3 mirror Grating rotates 2.5 2 1.5 Computer Detector eg CCD camera 0.5 4000 10000 4500 5000 5500 6308 6500 7000 7500 8500 9000 9500 Wavelength (4)

#### Schematic of a Slit Spectrograph






## Doppler Shift $v_r = c \Delta \lambda$ Problem $\lambda$ Orbital Speed of Earth $\lambda$

**Rest** = 656.2957

1 pixel = 0.0033 nm

Radial Velocity = Speed of Light <u>Change in Wavelength</u> Source Wavelength

#### C = 299,792.458 km/sec

## *Red Shift* = 656.3726

30 pixels

## .1 .2 .3 .4 .5 656.0 657.0

Wavelength (nm)



D.

"I love hearing that lonesome wail of the train whistle as the frequency decreases and the pitch lowers because of the Doppler effect." Wien's Law (Wilhelm Wien (Veen)—German 1864-1928):

$$T = \frac{0.2900}{\lambda_{max}} \qquad \text{or} \qquad \lambda_{max} = \frac{0.2900}{T}$$

Where λ (lambda) equals the wavelength of the greatest amount of energy being emitted in cm

T is the temperature in Kelvin.

Constant of proportionality 2.8977685(51)×10<sup>-3</sup> m T

2.900 x 10<sup>-3</sup> m K x  $\frac{10^2 \text{ cm}}{\text{m}}$  = 2.900 x 10<sup>-1</sup> cm T m = 0.2900 cm T There are 10<sup>-8</sup>  $\frac{\text{cm}}{\text{\AA}}$  or  $\frac{10^8 \text{ \AA}}{\text{cm}}$ 

What is  $\lambda_{max}$  of the sun if the sun's temperature = 5800 K

 $\lambda_{\max} - \frac{0.2900 \text{ cm K}}{5800 \text{ K}} = 5 \text{ x } 10^{-5} \text{ cm x } \frac{10^8 \text{ Å}}{\text{ cm}}$   $5 \text{ x } 10^3 \text{ Å}$  5000 Å

Stephan's Law (Josef Stefan—Austrian 1835-1893):

 $E = \rho T^4$  If T doubles energy increases by 16 fold

The total energy emitted from a black body is relative to the temperature in K to the fourth power of T<sup>4</sup>.

 $E = \rho T^4$ 

where  $\rho$  (rho), a constant, equals 5.67 x 10<sup>-5</sup> erg cm<sup>2</sup> sec T<sup>4</sup>

 $\mathbf{E} = \underbrace{\mathbf{erg}}_{\mathbf{cm}^2 \text{ sec}} = \text{One erg} = \text{the force of a dyne acting over a distance of} \\ \mathbf{cm}^2 \operatorname{sec} \quad 1 \operatorname{cm} \operatorname{equals} 1 \operatorname{dyne cm} = \underbrace{1 \operatorname{gm} 1 \operatorname{cm}}_{\operatorname{sec}^2} \quad 1 \operatorname{cm} = \underbrace{\operatorname{gm} \operatorname{cm}^2}_{\operatorname{sec}^2} \\ \mathbf{sec}^2 \qquad \mathbf{sec}^2$ 

Let's look at the units only  $E = \underline{erg} \qquad T^4$   $cm^2 \sec T^4$  $E = \underline{erg} \qquad cm^2 \sec$ 

The sun has a temperature of 5800K. What is its energy production?

The sun has a temperature of 5800K. What is its energy production?

$$E = \rho T^{4}; E = 5.67 \times 10^{-5} \text{ erg cm}^{-2} \text{ sec}^{-1} T^{-4} \times (5800 \text{ K})^{4}$$

$$E = 5.67 \times 10^{-5} \frac{\text{erg}}{\text{cm}^{2} \text{ sec}} T^{4} \qquad 1.11 \times 10^{15} \text{ K}^{4} \qquad \text{but } \text{K}^{4} = \text{T}^{4}$$

$$E = 6.29 \times 10^{10} \frac{\text{ergs}}{\text{cm}^{2} \text{ sec}} \qquad \text{area of the sun} = 6.088 \times 10^{22} \text{ cm}^{2}$$

$$E = 6.29 \times 10^{10} \frac{\text{ergs}}{\text{cm}^{2} \text{ sec}} \qquad x \quad 6.088 \times 10^{22} \text{ cm}^{2} = 38.3 \times 10^{32} \frac{\text{ergs}}{\text{sec}}$$

$$E = 3.83 \times 10^{33} \frac{\text{ergs}}{\text{sec}} \qquad \text{accepted value} = 3.839 \times 10^{33} \frac{\text{erg}}{\text{sec}}$$



#### Henry Norris Russell

October 25, 1877 – February 18, 1957

LIFE

#### H-R Diagram 1911-1913



Ejnar Hertzsprung October 8, 1873 - October 21, 1967

## Hertzsprung-Russell Diagram

Original H-R Diagram



## Hertzsprung-Russell Diagram



## Luminosity Classifications

Bright Supergiants (Ia)



#### H-R Diagram



#### **Contraction** to Zero Age Main Sequence



10<sup>6</sup>

Solar Mass Star **Cocoon of dust** keeps the temperature of the dust cloud relatively stable Track as the proto-star contracts Hayashi Star sheds its MAIN dust cloud lydrogen begins to burn

Temperature (K)

Cengage Learning

## Monroe Cabarrus County, NC



Ordinary Chondrite H4, 8.6 kg total mass

Witnessed fall, 3 p.m. October 31, 1849

1 gm specimen

Gary A. Becker collection

## Allende

*carbonaceous chondrite* 

Mexico

4.567 **BY** 

Front with Fusion Crust

Fell, 01:05, February 8, 1969

Gary A. Becker collection

#### **Back Section of Allende**

1. . . .

.

Gary A. Becker collection

## Shoek Front: A region of higher density moving through







a medium

## 16 kt tower blast... House 1100 meters from blast site...











#### Beirut, Lebanon Explosion August 4, 2020 3031 tons of ammonium nitrate

**Ágoston Németh** 



Ágoston Németh



## Veil Nebula

Name: Veil, Cygnus Loop, NGC 6960, Type: Supernova Remnant Distance: 1500 light years Constellation: Cygnus Category: Nebulae

> NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and the Digitized Sky Survey 2. Acknowledgment: J. Hester (Arizona State University) and Davide De Martin (ESA/Hubble).



Visible Light



G2

#### Cartwheel Galaxy-ESO 350-40

G1

500 million ly dist.,150,000 ly dia, mass  $2.9-4.8 \times 10^{9}$  suns

Hubble Space Telescope/insets: Chandra X-Ray Observatory/GALEX: Galaxy Evolution Explorer /Spitzer Space Telescope

# **Cartwheel Galaxy Chandra X-ray Observatory**

Chandra X-ray Observatory/Chandra X-ray Center (satellite image)

#### Whirlpool Galaxy, M51, NGC 5194/5

25,000 ly

*Canès Venatici, near Big Dipper handle Distance: 31 million ly* 

#### OB Associations



#### Eta Carinae Nebula

Carina the Keel, Southern Hemisphere



#### Eta Carinae Nebula-NGC 3372

Approx. one dozen stars 50-100 solar masses 7500 light years distant, 3 million years old

#### **Eta Carinae**

**Bright Rimmed** Globule

**Keyhole** Nebula

**Mystic Mountain** 

**Trumpler 14** 

Star Cluster

Hydrogen and dust being compressed by the expansion of the nebula

Image Credit: HST ACS/WFC, CTIO Blanco 4m MOSAIC2

## Stellar Birth in Orion

Flame d Horsehead

#### Orion Nebula

## Running Man-M43

## **Orion Nebula-M42**

NGC 1980



#### Visible

## Trapezium



## Stellar Birth Near Trapezium



## HST-Star Formation in the Crion Nebula

Red = Nitrogen Green = Hydrogen Blue = Oxygen



Proplyds

Trapezium



### Which one of these proplyds will become a star?
## Sagittarius C Center of the Milky Way Galaxy







James Webb Space Telescope

### Orion Molecular Cloud Complex



### Horsehead Region of Orion

Sigma Orionis 5-star system 09V/B0.5V/A2V/B2V/B2Vp



Alnitak (Zeta Orionis)

Triple star system-09 lab/09/B0 III

NGC 2023

IC 432

Horsehead Nebula (also known as Barnard 33 in emission nebula IC 434) IC = Index Catalogue of Nebulae

IC 434 is related to Sigma Orionis.

Flame Nebula (NGC 2024)

NGC 2024 is related to Zeta Orionis.





### Horsehead Nebula

### Barnard 33



Ryan M. Hannahoe



### The Cocoon of the Eagle Nebula, M16.



## Eagle Interior

9

NSF-NOAO-Kitt Peak image

### **Pillars of Creation/Visible**



### **Pillars of Creation/Infrared**









### Eagle Nebula in the Infrared

NASA's Spitzer Space Telescope

The Pillars of Creation probably no longer exist because they have been disrupted by the advancing supernova debris

#### Temperature/Wavelength



- Red-Coolest: From supernova blast 8-9000 ly distant, headed towards Eagle and Pillars

Pillars of Creation, 7000 ly distant, Eagle Nebula, M16

### Rosette Nebula NGC2237 5200 ly distant









Gary A. Becker image



### Mass/Radius of White Dwarfs





Influence of Mass on the Evolution of Stars

### Core of a Red Supergiant ready to



University of Alberta,

# Light Curve for a Type Ia

Type I supernovas occur in binary star systems when hydrogen from a red giant star's Roche lobe overflows onto a white dwarf's carbon core.

0 50 100 150 200 250 300 Days after Maximum Brightness

### Light Curve for a Type II Supernova



Type II supernovas results from a star with a minimum mass of eight to nine solar masses ending its life as a super red giant with an iron core.

0

50 100 150 200 250 300 350 400 Days after Maximum Brightness

### Supernova 1987A

### peculiar type II

Distance: 51.4 kpc (168,000 ly) Progenitor: Sanduleak -69 202 Peak apparent magnitude: +2.9 Constellation: Dorado the dolphinfish Atacama Large Millimeter/submillimeter Array (ALMA)

### Hyades and the Pleiades

Using the H-R Diagram to Determine the Age of Star Clusters

**Comet Machholz** 



**Blue Visual** 

Wavelength

### NGC 2264 Young or Old Star Cluster?



## NGC 2264

Age - 1 million years In Monoceros

Cone Nebula

Michael-Caligiuri

### Young or Old Cluster?



Color Index (B-V)

Pleiades-M45/Taurus, the Bull

### **Color-Magnitude Diagram for the Hyades**



### Pleiades-Hyades Star Clusters



## H-R Age Sequence Diagram for Clusters



## The End

Finding the Age of Star Clusters Using the Hertzsprung-Russell Diagram

### **Characteristics of Main Sequence Stars**

| Class               | Mass in<br>Comparison<br>to Sun | Contraction<br>to Zero Age<br>Main Sequence<br>Not well known | Surface<br>Temp.<br>(K) | Luminosity<br>compared<br>to sun | M<br>Absolute<br>Magnitude | Years on<br>Main<br>Sequence | Radius<br>in<br>suns |
|---------------------|---------------------------------|---------------------------------------------------------------|-------------------------|----------------------------------|----------------------------|------------------------------|----------------------|
| O6                  | 29.5<br>blue supergiant         | 10 Th                                                         | 45,000                  | 140,000                          | -4.0                       | 2 M                          | 6.2                  |
| O9<br>late          | 22.6                            | 100 Th                                                        | 37,800                  | 55,000                           | -3.6                       | 4 M                          | 4.7                  |
| B2<br>early         | 10.0                            | 400 Th                                                        | 21,000                  | 3,190                            | -1.9                       | 30 M                         | 4.3                  |
| B5                  | 5.46                            | 1 M                                                           | 15,200                  | 380                              | -0.4                       | 140 M                        | 2.8                  |
| A0<br>early         | 2.48                            | 4 M                                                           | 9,600                   | 24                               | +1.5                       | 1 B                          | 1.8                  |
| $A_{\text{late}}^7$ | 1.86                            | 10 M                                                          | 7,920                   | 8.8                              | +2.4                       | 2 B                          | 1.6                  |
| $F_{early}^2$       | 1.46                            | 15 M                                                          | 7,050                   | 3.8                              | +3.8                       | 4 B                          | 1.3                  |
| G2                  | 1.00                            | 20 M                                                          | 5,800                   | 1.00                             | +4.83                      | 10 B                         | 1.0                  |
| K7                  | 0.53                            | 40 M                                                          | 4,000                   | 0.11                             | +8.1                       | 50 B                         | 0.7                  |
| M8<br>late          | 0.17                            | 100 M                                                         | 2,700                   | 0.002                            | +14.4                      | 840 B                        | 0.2<br>two Jupiters  |
## Hertzsprung-Russell Diagram



## **Comparison of Old Star Clusters of Increasing Age**



Left to Right: The clusters become older. Note how the absolute magnitude of the turn-off position becomes fainter and moves towards cooler

star

| Class <b>\$</b> | B−V ≑ |
|-----------------|-------|
| O5V             | -0.33 |
| B0V             | -0.30 |
| A0V             | -0.02 |
| F0V             | 0.30  |
| G0V             | 0.58  |
| K0V             | 0.81  |
| MOV             | 1.40  |

H-R diagrams from J. Cummings-John Hopkins Uni./Color Index-Wikipedia

## **Evaluating the Age of Star Clusters**

#### lower main sequence All Stars are on the coming or going? main sequence. 100,000 -100,000 -10,000 10,000 -All stars are the 1000 1000 zero-age main sequence Luminosity (L<sub>Sun</sub>) 1 10 1 (new born) 100 Luminosity (L<sub>Sun</sub>) 10 10 -1. Present position 1 of Sun 0.1 0.1 -Age: 3 million years 40,000 20,000 10,000 5000 3000 40,000 20,000 10,000 5000 3000 **B2** K2 M6 $\mathbf{08}$ **B2** K2 M6 08 A0A0 Surface Temperature (K) Surface Temperature (K)

Are the stars on the

### Characteristics of MAIN SEQUENCE STARS

| Class       | Contraction<br>to Zero Age<br>Main Sequence<br>Not well known | Surface<br>Temp.<br>(K) | Luminosity<br>compared<br>to sun | Years on<br>Main<br>Sequence |
|-------------|---------------------------------------------------------------|-------------------------|----------------------------------|------------------------------|
| O6<br>mid   | 10 Th                                                         | 45,000                  | 140,000                          | 2 M                          |
| O9          | 100 Th                                                        | 37,800                  | 55,000                           | 4 M                          |
| B2<br>early | 400 Th                                                        | 21,000                  | 3,190                            | 30 M                         |
| B5          | 1 M                                                           | 15,200                  | 380                              | 140 M                        |
| A0<br>early | 4 M                                                           | 9,600                   | 24                               | 1 B                          |
| A7          | 10 M                                                          | 7,920                   | 8.8                              | 2 B                          |
| F2<br>early | 15 M                                                          | 7,050                   | 3.8                              | 4 B                          |
| G2          | 20 M                                                          | 5,800                   | 1.00                             | 10 B                         |
| K7          | 40 M                                                          | 4,000                   | 0.11                             | 50 B                         |
| M8<br>late  | 100 M                                                         | 2,700                   | 0.002                            | 840 B                        |

Gary A. Becker / Wikipedia / Internet slide

## **Evaluating the Age of Star Clusters**



#### Characteristics of MAIN SEQUENCE STARS

| Class       | Contraction<br>to Zero Age<br>Main Sequence<br>Not well known | Surface<br>Temp.<br>(K) | Luminosity<br>compared<br>to sun | Years on<br>Main<br>Sequence |
|-------------|---------------------------------------------------------------|-------------------------|----------------------------------|------------------------------|
| O6          | 10 Th                                                         | 45,000                  | 140,000                          | 2 M                          |
| O9          | 100 Th                                                        | 37,800                  | 55,000                           | 4 M                          |
| B2<br>early | 400 Th                                                        | 21,000                  | 3,190                            | 30 M                         |
| B5          | 1 M                                                           | 15,200                  | 380                              | 140 M                        |
| A0<br>early | 4 M                                                           | 9,600                   | 24                               | 1 B                          |
| A7          | 10 M                                                          | 7,920                   | 8.8                              | 2 B                          |
| F2<br>early | 15 M                                                          | 7,050                   | 3.8                              | 4 B                          |
| G2          | 20 M                                                          | 5,800                   | 1.00                             | 10 B                         |
| K7          | 40 M                                                          | 4,000                   | 0.11                             | 50 B                         |
| M8<br>late  | 100 M                                                         | 2,700                   | 0.002                            | 840 B                        |



Gary A. Becker / Internet slide



# The End