## CONSTRUCTION OF A HERTZSPRUNG-RUSSELL DIAGRAM Introduction: The spectral classification of stars began in the mid-19th century with two major efforts. One was to obtain a large sampling of low-resolution spectra, while the other was to image the spectra of a select number of stars to a high degree of resolution. At the same time, laboratory work made it abundantly clear that there was a relationship between the bright emission lines being produced under controlled laboratory experiments and with the absorption spectra of the stars being imaged. Astronomers speculated about the key to understanding the variety of lines which filled these spectrograms. Various classification schemes were proposed, but it was not until the early years of the 20th century, with the development of quantum theory, that it became clear that the distribution and intensity of the lines were mainly a function of the temperature of the stars being observed. The electrons of the various atoms making up the chemical components of a star were able to change their orbital positions in relationship to the temperature of the star. The Harvard classification system was eventually perfected by Annie Jump Cannon and Edward Charles Pickering. It consisted of O, B, A, F, G, K, and M stars, taken from the more orderly attempts of earlier classification schemes, but now arranged into a temperature sequence from hottest to coolest. Concurrent with the investigation of stellar spectra were efforts to determine the distances (parallaxes) to the stars. The first successful measurements was achieved by the German, Friedrich Wilhelm Bessel, in 1838 with the faint star 61 Cygni. Knowing the distance to a star and its apparent magnitude as observed from Earth, allowed astronomers to calculate mathematically (using the Distance Modulus $M = m + 5 - 5\log r$ ) the star's absolute magnitude (M) or its apparent brightness from a standardized distance of 10 parsecs or 32.6 light years from the sun. The absolute magnitudes (parallaxes) and the temperatures (spectral classification) of the stars could now be determined with some precision, but was there a relationship connecting these two parameters, or did all luminosities fit randomly into all temperature ranges? The problem was solved by two astronomers between 1910 and 1913, an American, Henry Norris Russell (1877-1957) and a Dane, Ejnar Hertzsprung (1873-1967). Together they constructed with much less accurate data than is available today, a two-dimensional representation of the stars (absolute magnitude vs. spectral type). This Hertzsprung-Russell diagram would in future years be expanded into a working model of stellar evolution whereby the life histories of stars and star clusters could be determined with confidence. <u>Purpose</u>: Your task will be to create and analyze an H-R diagram constructed from two different groupings of stars: the brightest stars in the sky, many of which are easily seen from a city environment and some of the closest stars to our sun. Several stars, including the sun, can be found in both groupings. <u>Materials Needed</u>: Graph paper (1/4-inch squares), ruler, lead pencil, colored pencils, preferably a blue, yellow, and red pencil for plotting points. **Procedure:** Create the framework for your H-R diagram by plotting spectral types along the X-axis and absolute magnitudes (M) along the Y-axis. Make sure that both axes are properly labeled and that your graph is titled. ## **Follow these instructions:** - 1. Data for your Hertzsprung-Russell diagram can be found in the brightest and nearest star tables found with this lab. - 2. Spectral types will be plotted along the horizonal x-axis. Start with $O_6$ stars at the origin and continue to $M_8$ in increments for each square as follows: $O_4$ , $O_6$ , $O_8$ , $O_8$ , $O_8$ , $O_9$ - 3. Plot absolute magnitude along the vertical y-axis. Start at the origin with an absolute magnitude of +18 and continue upward in increments of one magnitude per square until an absolute magnitude of -9 is reached. - 4. Use a <u>BLUE</u> pencil to color star plots of spectral types 0<sub>6</sub>-A<sub>9</sub>. - 5. Use a YELLOW pencil to color star plots of spectral types F<sub>0</sub>-G<sub>9</sub>. - 6. Use a RED pencil to color star plots of spectral types K<sub>0</sub>-M<sub>9</sub>. - 7. Stars contained in the <u>BRIGHTEST</u> Stars Table should have a short <u>VERTICAL</u> line segment drawn through them. - 8. Stars of the <u>NEAREST</u> Stars Table should have a short <u>HORIZONTAL</u> line segment drawn through them. - 9. A few stars can be found in both tables. These are indicated with a double asterisk in the "Thirty Brightest Stars Table." These stars should appear on your graph as small dots with crosses through them. Label these stars with their name on your graph. - 10. In the NEAREST star table, you will notice a "wd" in front of several spectral types. These stars are white dwarfs. Plot the spectral type as if they were a zero (wdA = $A_0$ ). - 11. The data in the BRIGHTEST star table that have a double asterisk are a compilation of the brightnesses if the system has multiple components. - 12. One star, Aldebaran, in the BRIGHTEST star table has a "v" next to the absolute magnitude to indicate that it is a variable star. - 13. Create a key by showing in tabular form what the colors and line segments represent on your graph. Your graphing grade will be determined by its accuracy (60%), neatness (20%), and labeling (20%). - 14. After completion of your Hertzsprung-Russell diagram, answer the questions found at the end of this exercise. - 15. <u>Note</u>: If a star's absolute magnitude is -2.5, the plot occurs above the -2 <u>position</u> on your H-R Diagram, but if the absolute magnitude is positive, like +4.3, the plot would occur below the line that indicates +4. ## THIRTY OF THE BRIGHTEST STARS From the Hipparcos Star Catalog Mark these stars with a vertical line segment. | Star | Rank | Name | MAGNI<br>apparent a<br>m | _ | DISTANCE light years | Spectral<br>Type<br>w/o luminosity | |-------------|------|-----------------|--------------------------|---------|----------------------|------------------------------------| | **Sun | | | -26.7 | +4.8 | 8.3 light min | . $G_2$ | | **Alpha CMa | (1) | Sirius | -1.46 | +1.43 | 8.6 | $A_1$ | | Alpha Car | (2) | Canopus | -0.73 | -5.64 | 310 | $F_0$ | | **Alpha Cen | (3) | Rigil Kentaurus | -0.29 | +4.06 | 4.39 | $G_2*/K_1$ | | Alpha Boo | (4) | Arcturus | -0.05 | -0.31 | 37 | $K_2$ | | Alpha Lyr | (5) | Vega | +0.03 | +0.58 | 25 | $A_0$ | | Alpha Aur | (6) | Capella | +0.07 | -0.49 | 42 | $G_0*/G_5$ | | Beta Ori | (7) | Rigel | +0.15 | -6.72 | 770 | ${f B}_8$ | | **Alpha CMi | (8) | Procyon | +0.36 | +2.64 | 11 | $F_5$ | | Alpha Eri | (9) | Achernar | +0.45 | -2.77 | 144 | $\mathbf{B}_3$ | | Alpha Ori | (10) | Betelgeuse | +0.55va | r -5.05 | 430 | $\mathbf{M}_2$ | | Beta Cen | (11) | Hadar | +0.61 | -5.42 | 530 | $\mathrm{B}_1$ | | **Alpha Aql | (12) | Altair | +0.77 | +2.20 | 16.77 | $A_7$ | | Alpha Tau | (14) | Aldebaran | + 0.86v | - 0.64v | 65 | $K_5$ | | Alpha Sco | (15) | Antares | +0.95 | -5.39 | 600 | $M_1*/B_4$ | | Alpha Vir | (16) | Spica | +0.97 | -3.56 | 260 | $B_1*/B_2$ | | Beta Gem | (17) | Pollux | +1.14 | +1.07 | 34 | $K_0$ | | Alpha PsA | (18) | Fomalhaut | +1.15 | +1.72 | 25 | $A_3$ | | Alpha Cyg | (19) | Deneb | +1.24 | -8.74 | 3000 | $A_2$ | | Alpha Leo | (21) | Regulus | +1.36 | -0.52 | 78 | $\mathbf{B}_7$ | | Epsilon CMa | (22) | Adhara | +1.50 | -4.10 | 430 | $\mathrm{B}_2$ | | Alpha Gem | (23) | Castor | +1.58 | +0.59 | 52 | $A_1*/A_2$ | | Gamma Ori | (26) | Bellatrix | +1.64 | -2.72 | 240 | $\mathrm{B}_2$ | | Alpha UMa | (34) | Dubhe | +1.79 | -1.09 | 124 | $K_0*/F_0$ | | Delta CMa | (36) | Wezen | +1.83 | -6.87 | 1800 | $F_8$ | | Alpha UMi | (48) | Polaris | +1.99v | -3.63v | 430 | $F_7$ | | Alpha And | (54) | Alpheratz | +2.07 | -0.30 | 97 | $\mathbf{B}_9$ | | Kappa Ori | (56) | Saiph | +2.07 | -4.65 | 720 | $\mathbf{B}_{0.5}$ | | Beta UMi | (57) | Kochab | +2.07 | -0.87 | 127 | $K_4$ | | Beta Leo | (62) | Denebola | +2.14 | +1.92 | 36 | $A_3$ | | | | | | | | | Key: M = absolute magnitude, m = apparent magnitude, and r is the distance to the star measured in parsecs (1 pc = 3.2616 ly). Where \* = binary or multiple star system in which the component with the asterisk contributes most of the light of the system. Plot only the star with the asterisk. <sup>\*\* =</sup> stars that are both bright and near. ## THIRTY OF THE NEAREST STARS From the Hipparcos Star Catalog\* Mark these stars with a horizontal line segment. | | MAGN | NITUDE | DISTANCE | Spectral | |--------------------|-----------|----------|----------------|-----------------------| | Star Name | apparent | absolute | light years | Type | | | m | M | | | | Sun | -26.7 | +4.8 | 8.3 light min. | $G_2$ | | Alpha Cen C Proxir | | +15.45 | 4.22 | $M_5$ | | В | +1.35 | +5.70 | 4.39 | $\mathbf{K}_0$ | | A bright | est -0.01 | +4.34 | 4.39 | $G_2$ | | Barnard's star | +9.54 | +13.24 | 5.94 | $M_5$ | | Wolf 359 | +13.5 | +16.5 | 7.5 | $M_8$ | | Lalande 21185 | +7.5 | +10.7 | 8.1 | $M_2$ | | Sirius A bright | est -1.44 | +1.45 | 8.60 | $A_1$ | | В | +8.7 | +11.6 | 8.6 | wdA | | UV Ceti A | +12.5 | +15.3 | 8.8 | $M_6$ | | В | +13.0 | +15.8 | 8.8 | $M_6$ | | Ross 154 | +10.6 | +13.3 | 9.5 | $M_5$ | | Epsilon Eridani | +3.72 | +6.18 | 9.69 | $K_2$ | | 61 Cygni A | +5.20 | +7.49 | 11.36 | <b>K</b> <sub>5</sub> | | Alpha CMi Procyon | +0.36 | +2.64 | 11.41 | F <sub>5</sub> | | В | +10.7 | +13.0 | 11.41 | wdF | | 61 Cygni B | +6.05 | +8.33 | 11.43 | $\mathbf{K}_7$ | | Epsilon Indi | +4.69 | +6.89 | 11.83 | $K_5$ | | Tau Ceti | +3.49 | +5.68 | 11.89 | $G_8$ | | Lacaille 8760 | +7.4 | +9.5 | 12.4 | $\mathbf{M}_1$ | | Kapteyn's star | +8.86 | +10.89 | 12.77 | $\mathbf{M}_0$ | | Kruger 60 A | +9.59 | +11.58 | 13.07 | $M_4$ | | В | +11.3 | +13.4 | 13.07 | $M_5$ | | Van Maanen's star | +12.37 | +14.15 | 14.37 | wdG | | 40 Eridani A | +4.43 | +5.92 | 16.45 | $K_1$ | | В | +9.5 | +11.1 | 16.45 | wdA | | С | +11.2 | +12.8 | 16.45 | $M_4$ | | 70 Ophiuchi A | +4.03 | +5.50 | 16.59 | $K_0$ | | В | +6.0 | +7.5 | 16.59 | K <sub>5</sub> | | Altair | +0.76 | +2.20 | 16.77 | A <sub>7</sub> | Key: where M = absolute magnitude, m = apparent magnitude, and r is the distance to the star measured in parsecs (1 pc = 3.2616 ly). <sup>\*</sup> Visual and absolute magnitudes taken to the hundredth decimal place are from the Hipparcos Star Catalog.. | Nam | ne | Date | Moravian University | |-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------| | | MAKING SENSE OF THI | E HERTZSPRUNG-RUS | SSELL DIAGRAM | | can i | refer back to the completed graph, no king with the two tables which contains in the sky. Your answers go at the | oting the representations ain information about the | given by the symbols or 30 nearest and the 30 brightest | | 1. | , | Most of | the stars which are near to the | | | Earth (stars with horizonal bars on the HIGH/LOW temperature. | the graph) are of HIGH/L | OW luminosity and | | | the sky (stars with vertical bars) act temperatures. Do you recognize an table? | Most of ually have HIGH/LOW I y of the names in the "The | the stars which appear bright in uminosities and HIGH/LOW nirty of the Brightest Stars" | | | Statement: The stars on your H-R of which are called luminosity classifi | | gate in three different groupings | | | Main Sequence: of stars moves from the upper left to the main sequence. The location of demonstrating why we call the sun | o the lower right on your<br>the sun along this curve | H-R diagram. It is known as | | 4 | , | All of stars | along the main sequence are | | | powering themselves just like the su thermonuclear fusion. | un by converting | into through | | | sequence are millions of times more main sequence. The most common G, K, M classification. Pick only o | e than the st<br>category among main se | ars along the lower right of the quence stars is the O, B, A, F, | | | fuel is directly related to the along the main sequence. Luminos correct word. Stars in the upper left in their cores and higher core temperat a much FASTER/SLOWER pace sequence stars. | ity will not be accepted, let corner of the main sequeratures, causing these blueratures. | but it is directly related to the ence have greater compression ue supergiants to burn hydrogen | | 7. | | High ma | ass stars found in the upper left | | | of the H-R diagram's main sequence along the main sequence along the | | | | 8. | Giants: Stars which are generally positioned to the upper right of | | | | | |-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | | the H-R diagram are extremely luminous, but according to their spectral characteristics | | | | | | | (temperatures), they are very | | | | | | 9. | | | | | | | 10. | The cores of | | | | | | 10. | | | | | | | 11. | <u>Dwarfs:</u> , In an opposite sense, there appears to be several stars on your Hertzsprung-Russell diagram (lower left) which are, with respect to temperature, very, but are not very bright. The matter present in these stars is inert, nonreacting helium or carbon-oxygen, leftover material from the cores and shells of stars that were at one time undergoing thermonuclear fusion. Because these stars are radiating a great deal of energy per unit area, but are not very luminous, their sizes must be very | | | | | | 12. | Stars with high surface temperatures, but low luminosities are called stars (two words). | | | | | | 13. | From main sequence to red giant to white dwarf suggests a sequence of from core hydrogen burning to other types of fusion processes, and eventually death. | | | | | | 14. | Predict why the population densities, the number of stars in the various luminosity classifications, are lower than the number of stars found in the same spectral classifications along the main sequence. | | | | | | | Red Giants (cool, but big): | | | | | | | White Dwarfs (hot, but faint): | | | | | | 15. | Mark areas of the main sequence, red giant, and white dwarf regions of your H-R diagram. | | | | | Name \_\_\_\_\_\_ Date \_\_\_\_\_ Moravian University 16. The Hertzsprung-Russell diagram is a powerful tool for calculating the distances to stars when their parallax angles are too small to measure. A star is photographed in a nearby galaxy, and it is determined to have an apparent magnitude of +14.55. When a spectrogram is obtained, it is found to be a main sequence star similar to Kappa Orionis (absolute magnitude = -4.65) which you plotted on your graph. Use the distance modulus, to find how far away the galaxy is from us. $$M = m + 5 - 5 \log r$$ Distance Modulus solving for r M = absolute magnitude (consult brightest star table) m = apparent magnitude (given in problem) $$\frac{\mathbf{M} - \mathbf{m} - \mathbf{5}}{\mathbf{-5}} = \log \mathbf{r}$$ antilog $$\underline{M-m-5} = \text{antilog } (\text{log r})$$ The log of a number is the exponent to which 10 must be raised. The antilog is the number created when 10 is raised to the "x" power = $10^x$ . $$10^{x} = 10^{\frac{M-m-5}{-5}} = r$$ Show all work for problem 16 here. 17. A star with an apparent magnitude of +15.78 has a parallax of 282.85 mas. Predict its location on the Hertzsprung-Russell diagram. Below, first make a <u>qualitative</u> prediction in ink, then complete the mathematical calculations below. What is your hunch? \_\_\_\_\_ Was your hunch correct? \_\_\_\_\_ 18. Quantify your answer to question 17 mathematically and state one precise location on the H-R diagram where this star could be located and then proceed to the last two questions on the sheet. Compute the distance to the star: $d_{pc} = \frac{1}{p}$ " Use the Distance Modulus to calculate the absolute magnitude of the star: $M=m+5-5 \log r$ 19. \_\_\_\_\_\_ If this star had a spectral classification of F<sub>6</sub>, its luminosity classification would make it (a) an \_\_\_\_\_. 20. \_\_\_\_\_\_ If this star had a luminosity classification of M<sub>8</sub>, its luminosity classification would make it (a) an \_\_\_\_\_\_.